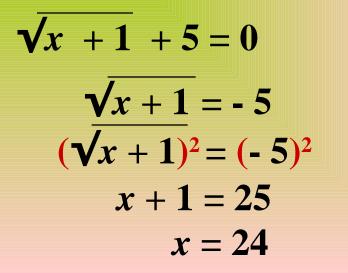
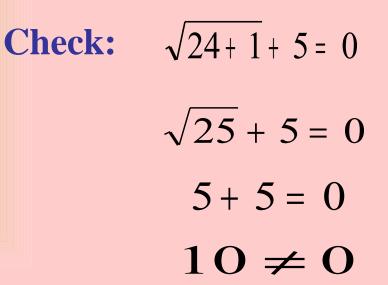
Aim: How do we solve radical equations?


- **Do Now**: Solve for *x*:
- 1. *x* + 1 = 5
- 2. *x* + 1 = -5
- 3. $\sqrt{x+1}$ 5 = 0
- **4.** $\sqrt{x+1} + 5 = 0$


HW: p.112 # 16,18,22,24,26,28 p. 37 # 29,31 p.35 # 8 p.115 # 20

Radical Equations

An equation in which a variable occurs in the radicand is called a radical equation. It should be noted, that when solving a radical equation algebraically, extraneous roots may be introduced when both sides of an equation are squared. Therefore, you <u>must check</u> your solutions for a radical equation.

Solve: $\sqrt{x+1} - 5 = 0$ $x \ge 3$	Check: L.S.	R.S.
$\sqrt{x+1} = 5$	$\sqrt{x+1}$ - 5	0
$(\sqrt{x+1})^2 = (5)^2$	$\sqrt{24} + 1 - 5$	
<i>x</i> + 1 = 25	5 - 5	
x = 24 Theref	ore the solution	
$\frac{1}{1} = \frac{1}{2}$	fore, the solution 24.	

reject the answer

x = 24 is extraneous.

Therefore, there are no real roots.

Solving Radical Equations

$4 + \sqrt{4 + x^2} = x$ Check:	$4 + \sqrt{4 + x^2}$	x
$\frac{\sqrt{4+x^2} = x - 4}{(\sqrt{4+x^2})^2 = (x - 4)^2}$	$4+\sqrt{4+\left(\frac{3}{2}\right)^2}$	$\frac{3}{2}$
$4 + x^2 = x^2 - 8x + 16$ 8x = 12	$4 + \sqrt{4 + \frac{9}{4}}$	
$x = \frac{3}{2}$	$\sqrt{4}$ 4 4 $\sqrt{\frac{25}{4}}$	
Since $\frac{3}{2} \neq \frac{13}{2}$, the solution of	1 7	
$x = \frac{3}{2}$ is extraneous. Therefore,	$4 + \frac{5}{2}$ 13	3
there are no real roots.	$\frac{13}{2}$	$\neq \frac{3}{2}$

Solving Radical Equations

Solve
$$\sqrt{2x+4} - \sqrt{x+7} = 0$$
. $x \ge -2$

$$\sqrt{2x+4} = \sqrt{x+7}$$
$$\left(\sqrt{2x+4}\right)^2 = \left(\sqrt{x+7}\right)^2$$
$$2x+4 = x+7$$
$$x = 3$$

L.S. R.S.

$$\sqrt{2x+4} - \sqrt{x+7}$$
 0
 $\sqrt{2(3)+4} - \sqrt{3+7}$
 $\sqrt{10} - \sqrt{10}$
0

Set up the equation so that there will be one radical on each side of the equal sign.

Square both sides.

Simplify.

Verify your solution.

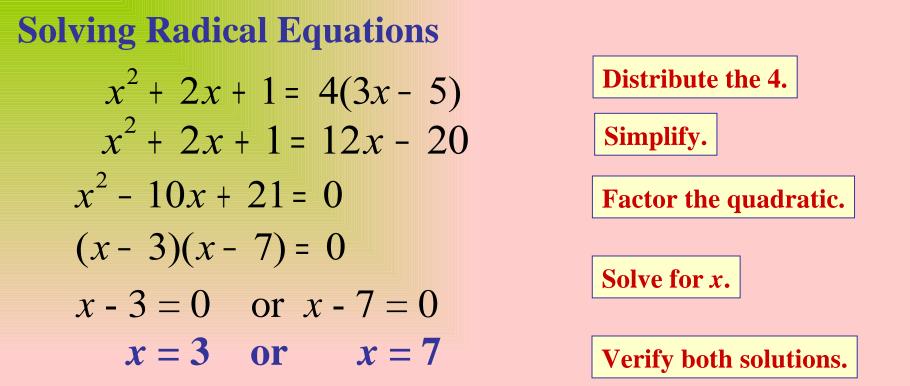
Therefore, the solution is x = 3.

Solving Radical Equations

Solve
$$\sqrt{5x+1} - \sqrt{3x-5} = 2$$
.
 $\sqrt{5x+1} = 2 + \sqrt{3x-5}$
 $(\sqrt{5x+1})^2 = (2 + \sqrt{3x-5})^2$
 $5x+1 = 4 + 4\sqrt{3x-5} + (3x-5)$
 $5x+1 = 3x-1+4\sqrt{3x-5}$
 $2x+2 = 4\sqrt{3x-5}$
 $x+1 = 2\sqrt{3x-5}$
 $(x+1)^2 = (2\sqrt{3x-5})^2$
 $x^2 + 2x + 1 = 4(3x-5)$

Set up the equation so that there will be only one radical on each side of the equal sign.

Square both sides of the equation.


Use Foil.

Simplify.

Simplify by dividing by a common factor of 2.

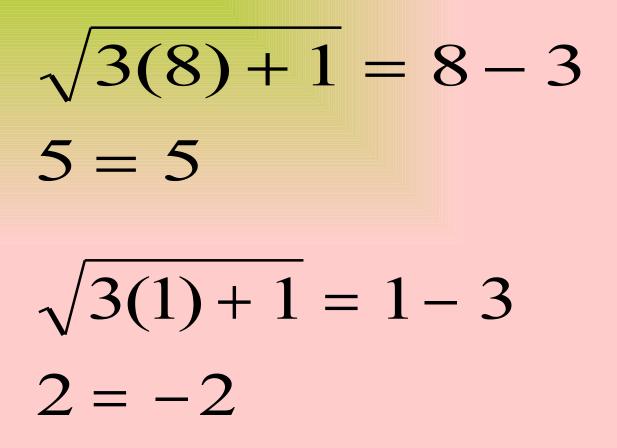
Square both sides of the equation.

Use Foil.

L.S.	R.S.	L.S.	R.S.
$\sqrt{5x+1} - \sqrt{3x-5}$	2	$\sqrt{5x+1} - \sqrt{3x-5}$	2
$\sqrt{5(3)+1} - \sqrt{3(3)-5}$		$\sqrt{5(7)+1} - \sqrt{3(7)-5}$	
4 - 2		6 - 4	
2		2	

One more to see another extraneous solution:

$$\sqrt{3x+1} = x-3$$
 The radical is already isolated


$$\left(\sqrt{3x+1}\right)^2 = \left(x-3\right)^2$$

Square both sides
You must square the whole side
NOT each term.
This must be FOILed
3 x + 1 - x²
Square both sides

$$3x + 1 = x^{2} - 6x + 9$$

$$x^{2} - 9x + 8 = 0$$

$$(x - 8)(x - 1) = 0 \quad x = 8, x = 1$$

checks!

Therefore, the solution is 8 only.

1.
$$\sqrt{5x-1-3} = 0$$

x = 2

^{2.}
$$\sqrt{x^2 + 9} - x = 1$$
 x = 4

3.
$$\sqrt{5x+6} = \sqrt{9x-2}$$

x = 2

4.
$$\sqrt{3x-1} = 2\sqrt{8-2x}$$
 x = 3

5.
$$\sqrt{x^2 - 7} = x - 1$$
 x = 2