Section 1.6

Dr. Mark Faucette

Department of Mathematics

University of West Georgia

Transformations of Functions

- How does the graph of a function change if you add a constant to the independent variable? To the dependent variable?
- How does the graph of a function change if you multiply a constant times the independent variable? To the dependent variable?
- How does the graph of a function change if you change the sign of the independent variable? Of the dependent variable?

Topics

- Vertical shifts
- Horizontal shifts
- Reflection about the *x*-axis
- Reflection about the y-axis
- Vertical stretching and shrinking
- Horizontal stretching and shrinking

Vertical Shifts

Given the graph

you get the graph

$$y = f(x) + k$$

y = f(x)

by moving the first graph up k units (for k>0)

Adding a constant outside the function moves the graph of the function **up**.

Vertical Shifting (Continued)

Given the graph

you get the graph

$$y = f(x) - k$$

y = f(x)

by moving the first graph down k units (for k>0)

Subtracting a constant outside the function moves the graph of the function **down**.

Vertical Shifting (Continued)

Horizontal Shifting

Given the graph

you get the graph

$$y = f(x+k)$$

y = f(x)

by moving the first graph left k units (for k>0)

Adding a constant inside the function moves the graph of the function **left**.

Horizontal Shifting (Continued)

Given the graph

you get the graph

y = f(x - k)

y = f(x)

by moving the first graph right k units (for k>0)

Subtracting a constant inside the function moves the graph of the function **right**.

11)/02/11

Reflections about the x-axis

Given the graph

you get the graph

y = -f(x)

y = f(x)

by reflecting the first graph across the x-axis.

Changing y to -y reflects the graph across the x-axis.

Reflections about the x-axis

Reflections about the y-axis

Given the graph

you get the graph

y = f(-x)

y = f(x)

by reflecting the first graph across the y-axis.

Changing x to -x reflects the graph across the y-axis.

Vertical Stretching

Given the graph

you get the graph

y = kf(x) for k > 1

y = f(x)

by stretching the first graph vertically by a factor of *k*.

Multiplying y by k > 1 stretches the graph vertically by a factor of k.

Vertical Stretching

17)/02/11

Vertical Shrinking

Given the graph

you get the graph

y = kf(x) for 0 < k < 1

y = f(x)

by shrinking the first graph vertically by a factor of *k*.

Multiplying *y* by 0<*k*<1 shrinks the graph vertically by a factor of *k*.

Horizontal Stretching

Given the graph

you get the graph

y = f(kx) for 0 < k < 1

y = f(x)

by stretching the first graph horizontally by a factor of *k*.

Multiplying x by $0 \le k \le 1$ stretches the graph horizontally by a factor of k.

Horizontal Shrinking

Given the graph

you get the graph

y = f(kx) for k > 1

y = f(x)

by shrinking the first graph horizontally by a factor of *k*.

Multiplying x by k>1 shrinks the graph horizontally by a factor of k.

Horizontal Shrinking

Summary

- We have learned about vertical and horizontal shifting
- We have learned about vertical and horizontal stretching and shrinking
- We have learned about reflections about both axes

Things To Do

- Reread Section 1.6
- Do the homework for Section 1.6
- Read Section 1.7

One More Thing . . .

Have a nice day