Homework #51

Answers

From Houghton-Mifflin Precalculus 3rd Edition

p352:

For each the standard right triangles with typical Pythagorean triples is used unless otherwise noted.

- 38) 4/5
- 39) 5/4
- 40) 7/25
- 41) -13/12
- 42) If the opposite leg is 3 and the adjacent leg is 5 then the hypotenuse, n is: $3^2 + 5^2 = n^2$

$$9 + 25 = n^2$$

 $34 = n^2$ $n = \sqrt{34}$ Ans. $\sqrt{34/5}$

43) If the opposite leg is 3 and the hypotenuse is 8 then the adjacent leg, n is: $3^2 + n^2 = 8^2$

$$9 + n^2 = 64$$

 $n^2 = 55$ $n = \sqrt{55}$ Ans: $-3/\sqrt{55}$

48) For $\angle A$ the adjacent leg is x and the hypotenuse is 1. For the apposite leg n: $x^2 + n^2 = 1^2$

For the opposite leg, n:
$$x^2 + n^2 = 1^2$$

 $n = \sqrt{1 - x^2}$
 $\sin(Arc \cos x) = \sqrt{1 - x^2}$

49) For $\angle A$ the opposite leg is x - 1 and the hypotenuse is 1.

For the adjacent side, n:
$$(x - 1)^2 + n^2 = 1^2$$

$$n = \sqrt{1 - (x - 1)^2}$$

$$= \sqrt{-x^2 + 2x}$$

$$\sec(Arc sin (x - 1)) = \frac{1}{\sqrt{-x^2 + 2x}}$$

50) For $\angle A$ the adjacent leg is x and the is hypotenuse 5.

For the opposite leg, n:
$$x^2 + n^2 = 5^2$$

 $n = \sqrt{25 - x^2}$
 $\tan(Arc \cos(x/5)) = \frac{\sqrt{25 - x^2}}{x}$

51) For $\angle A$ the adjacent leg is x and the hypotenuse is 1. For the opposite leg, n: $x^2 + n^2 = 1^2$ $n = \sqrt{1 - x^2}$

$$\sin(\operatorname{Arc\ cos\ x}) = \sqrt{1-x^2}$$

51) For this we just need the reciprocal: $\cot(Arc \tan (1/x)) = x$