Lesson19 CompletingtheSquare.notebook

Lesson 19

Aim: How do we solve quadratic equations by the completing the square method?

HW: Ch. 5 Read pages 186 to 192 page 192 #4,8,19,22,30 Ch 3 page 112 # 17

Do Now:

Factor:

1.
$$x^2 - 4x + 4$$

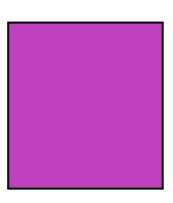
1.
$$x^2 - 4x + 4$$
 (x - 2)(x - 2) or (x-2)²

Solve for x:

2.
$$x^2 - 6x - 7$$

$$(x-7)(x+1) = 0$$

 $x-7=0$ $x+1=0$
 $x=7$ $x=-1$


3.
$$x^2 - 6x + 7$$

• *What do we do????*

Oct 12-9:12 AM

or Completing the Square ve the constant term the other side. d the square of half of ddle term (coefficient of b). 1 this to both sides. tor to find the square. te the square root ı sides.

ve for x.

$$x^2 - 6x + 7 = 0$$

 $x^2 - 6x = -7$

$$x^2 - \underline{6}x = -7$$

(Divide 6 by 2 to help get the perfect square)

$$x^2 - 6x + 3^2 = -7 + 3^2$$

$$x^2 - 6x + 9 = -7 + 9$$

$$x^2 - 6x + 9 = 2$$

$$(x-3)^2 = 2$$

$$\int (x - 3)^2 = \sqrt{2}$$

$$x - 3 = \pm \sqrt{2}$$

$$x = 3 \pm \sqrt{2}$$

Example:

$$x^2 + 6x + 2 = 0$$

Move the constant.

$$x^2 + 6x + _{--} = -2 + _{--}$$

•Form a "perfect square".

$$x^2 + 6x + 9 = -2 + 9$$

Factor & Simplify.

$$(x + 3)^2 = 7$$

Square root.

$$\sqrt{(x + 3)^2} = \sqrt{7}$$

 $x + 3 = \pm \sqrt{7}$

Solve what is left.

$$x = -3 \pm \sqrt{7}$$

Oct 12-9:19 AM

Solve:
$$2x^2 + 8x - 3 = 0$$

Solve for x: $2x^2 + 8x - 3 = 0$

Each term divided by the leading coefficient

$$x^2 + 4x - \frac{3}{2} = 0$$

$$+ \frac{3}{2} + \frac{3}{2}$$
Move the constant to the right side.
$$x^2 + 4x = \frac{3}{2}$$

$$x^2 + 4x + 4 = \frac{3}{2} + 4$$
Add the square of the middle term on hath sides
$$(x+2)^2 = \frac{11}{2}$$
Factor left side and simplify right side
$$x + 2 = \pm \sqrt{\frac{11}{2}}$$
Take square root on by sides
$$x = -2 \pm \sqrt{\frac{11}{2}}$$
solve for x

Solve for x by completing square

1.
$$x^2 + 6x + 3 = 0$$

$$-3\pm\sqrt{6}$$

2.
$$x^2 - 4x - 6 = 0$$

$$2 \pm \sqrt{10}$$

3.
$$x^2 + 10x + 17 = 0$$

$$-5 \pm 2\sqrt{2}$$

Oct 12-9:28 AM