Factoring Polynomials

Factoring Polynomials and Solving

How do you factor a trinomial with a leading coefficient of 1 ?
Example: Factor x ${ }^{2}-13 x+36$
You can use a diamond...

The factors are $(\mathrm{x}-9)(\mathrm{x}-4)$
Example: Factor $\mathrm{x}^{2}-3 \mathrm{x}-40$

The factors are $(\mathrm{x}-8)(\mathrm{x}+5)$

How do you factor a trinomial whose leading coefficient is not 1?

 Example: Factor $3 x^{2}+13 x+4$We will make a T to determine the coefficients of the factors...

Multiple diagonally and add.
...if not, try another combination of factors...

$$
(3 x+1)(x+4)
$$

Example: Factor $6 \mathrm{~d}^{2}+33 \mathrm{~d}-63$
Remember, look for the GCF first...
GCF: 3

$$
3\left(2 d^{2}+11 d-21\right)
$$

Now, factor the trinomial (using a T)

$$
\begin{array}{c|c}
2 & -3 \\
\hline 1 & 7 \\
-3+14=11 \\
\mathbf{3}(2 d-3)(d+7)
\end{array}
$$

How do you factor the sum or difference of cubes?
You'll need to memorize the factorization of the sum or difference of two cubes:
Sum of Two Cubes:

$$
\mathbf{a}^{3}+b^{\frac{3}{3}}(a+b)\left(a^{2}-a b+b^{2}\right)
$$

Difference of Two Cubes:

$$
\mathbf{a}^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Example: Factor $x^{3}+27$
The cube roots of the terms are x and 3

$$
=(x+3)\left(x^{2}-3 x+9\right)
$$

Example: Factor $128 x^{3}-250$
Factor out the GCF first...

$$
=2\left(64 x^{3}-125\right)
$$

The cube roots are $4 x$ and -5

$$
=2(4 x-5)\left(16 x^{2}+20 x+25\right)
$$

How do you factor a polynomial that has 4 terms?
Example: Factor $\mathrm{x}^{2}-2 \mathrm{xy}+\mathrm{x}-2 \mathrm{y}$
Group terms together to find a GCF.

$$
\left(x^{2}-2 x y\right)+(x-2 y)
$$

The GCF of this binomial is x

$$
x(x-2 y)+(x-2 y)
$$

The GCF is the binomial: $(\mathrm{x}-2 \mathrm{y})$

$$
(x-2 y)(x+1)
$$

Example: Factor $\mathrm{a}^{2}+4 \mathrm{ab}-9 \mathrm{x}^{2}+4 \mathrm{~b}^{2}$
This has a perfect square trinomial hidden in it.

$$
\begin{array}{r}
\mathbf{a}^{2}+4 \mathbf{a b}+4 \mathbf{b}^{2}-9 x^{2} \\
(\mathbf{a}+2 \mathbf{b})^{2}-9 x^{2}
\end{array}
$$

Now, this is the difference of 2 squares

$$
(a+2 b+3 x)(a-2 b-3 x)
$$

Factoring Strategy

- Look for the GCF.
- If there are 2 terms, look for
- Difference of 2 squares
- Difference or Sum of 2 cubes
- If there are 3 terms, look for
- Perfect Square trinomial
- Diamond or T
- If there are 4 terms, look for
- grouping

